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Abstract

In a recent paper, Borenstein, Cameron and Gilbert (1997) (BCG) claim that gasoline prices rise
quickly following an increase in the price of crude oil, but fall slowly following a decrease in the
price of crude oil. This paper estimates an error correction model with daily spot gasoline and
crude oil price data over the period 1985-1998 and Þnds no evidence of asymmetry in wholesale
gasoline prices. The sources of the difference in results are twofold. First, our paper uses the
standard Engle-Granger two-step estimation procedure while BCG used a nonstandard estimation
methodology. Second, even using BCG�s nonstandard speciÞcation, the use of daily as opposed to
weekly data shows little evidence of price asymmetry.
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1 Introduction

Recently, Peltzman (2000) has revitalized interest in asymmetric output price responses to

input price shocks.1 This topic is particularly relevant for gasoline markets since every positive

crude price shock seems to evoke a congressional investigation. In fact, Borenstein, Cameron,

and Gilbert (1997, hereafter BCG) Þnd persuasive evidence for asymmetry � that gasoline prices

respond quickly to crude oil price increases, but adjust much slower to crude oil price decreases.

Bacon (1991) characterizes this type of response as the �rockets and feathers� hypothesis with

gasoline prices shooting up like rockets for positive oil price shocks and ßoating downward like

feathers in response to negative oil price shocks.2 This type of asymmetry has lead to a variety

of theoretical explanations including oligopolistic behavior, inventory explanations, and consumer

search explanations (Borenstein (1991), Reagan and Weitzman (1982) and Borenstein and Shepherd

(1996)). While asymmetric price responses do not necessarily emanate from market inefficiencies,

evidence of symmetric, rapid price responses is clear evidence of an efficient market.

The purpose of this paper is to rigorously test the robustness of the rockets and feathers hypoth-

esis by examining the sensitivity of the BCG results both to data frequency and model speciÞcation.

In contrast to BCG and other studies3 which rely on weekly price data, this paper uses daily data

spanning 13 years of volatile oil prices (1985-1998). In principle, daily data provide a much richer

data set for eliciting effects from lagged changes in crude oil prices. As demonstrated by Geweke

(1978), estimation over broader data intervals can result in signiÞcant bias. In our case, daily data

may provide more reliable estimates than weekly data, particularly if gasoline prices respond almost

instantaneously to crude price changes. Geweke points out that aggregation over time can create

a type of omitted variables bias problem because the intertemporal lag distribution is not properly

speciÞed. Another distinctive difference in our approach is that we adopt the standard Engle-

Granger error correction model, which offers a parsimonious modelling approach ideally suited for

distinguishing price asymmetries.

Section 2 brießy describes previous tests of the rockets and feathers hypothesis and their underly-

ing assumptions. Section 3 presents the error correction model with and without price asymmetries

1For other earlier papers interested in asymmetries, see Wolfram (1971), Blanchard and Summers

(1987) and Granger and Lee (1989) to name only a few.
2Interestingly, Bacon (1991) Þnds only slight evidence for asymmetry using UK data.
3Also see Bacon (1991), Balke, Brown, and Yucel (1998) and Norman and Shin (1991).
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and reconciles our results with BCG. Section 4 recapitulates the key results.

2 Background

2.1 Determinants of Gasoline Prices

Due to the extreme short run inelasticity of supply and demand for crude oil, crude oil prices

have exhibited extreme volatility in day-to-day trading, making it ideally suited for study of the

transmission of price shocks. With crude oil being the principal input in the production of gasoline,

one would expect crude oil prices to be a primary determinant of gasoline prices. Like previous

research we abstract from other determinants of gasoline prices and simply focus on variants of the

following simple speciÞcation:

PGt = γ (L)PGt−1 + β (L)PCt + εt (1)

where the price of gasoline (PG) is an autoregressive process which depends on a distributed lag

(β (L)) of current and past crude oil prices (PC). Nevertheless, this speciÞcation should not be

interpreted as a structural price equation. It is clear that other factors also inßuence the price of

gasoline such as reÞnery capacity utilization, inventory levels, and future price expectations.4

The omission of these other determinants seems justiÞable if the purpose of equation (1) is

simply to examine the transmission of crude price shocks to gasoline prices. Besides, capacity

utilization and inventory data are available only on a monthly frequency. Yet another potential

concern with equation (1) is simultaneous equation bias since crude oil and gasoline prices are

determined jointly. Fortunately, simultaneity is not likely to be a serious problem here because

crude oil prices are determined in world markets.

Since gasoline prices are observed at several points after leaving the reÞnery and ending at the

service station, it is important to distinguish at what point in the distribution chain asymmetries

are observed. Gasoline prices are observed at the following four stages of the distribution channel:

regional bulk spot markets, wholesale city terminals, dealer tank wagon, and the retail pump.5

BCG Þnd that wholesale city terminals react almost instantaneously to regional bulk spot prices

4See Adams and Griffin (1972).
5Dealer tank wagon prices have not been typically used because they generally do not include

discounts from reported prices.
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and conclude that there are two economically interesting lags � the lag in reaction of the regional

spot market price to changes in crude oil prices and the subsequent lag in adjustment of the retail

price. BCG Þnd evidence of price asymmetries in both relationships.6 Because of the availability

of daily data, our focus here is limited to the former relationship � the linkage between crude oil

prices and gasoline prices at the regional bulk spot markets.7

2.2 Results From Previous Research

Previous research is divided as to whether equation (1) can be analyzed in levels or Þrst

differences because of the potential non-stationarity of the time series. Bacon�s (1991) study of U.K.

retail gasoline prices simply proceeded with a levels speciÞcation assuming a partial adjustment

mechanism and found a statistically signiÞcant, but slight rockets and feathers effect. BCG perform

augmented Dickey-Fuller tests for a unit root and since they cannot reject the unit root hypothesis

for 3 of the 4 price series analyzed, they proceed to Þrst difference equation (1) and postulate an

error correction model. Balke, Brown, and Yucel (1998), Þnd that evidence for asymmetry depends

critically on the choice of levels versus a Þrst difference speciÞcation. They Þnd asymmetry using

Þrst differences but symmetry when using data in levels. We focus on comparison of our Þndings

with those of BCG, because of its comprehensive nature and its unequivocal evidence for asymmetry.

3 Model SpeciÞcation and Estimation

3.1 The Standard Error Correction Model

In recent years, the error correction model has emerged as the preferred approach for modelling

series which are cointegrated (Watson (1994)). The Granger Representation Theorem (Engle and

Granger (1987)) shows that any cointegrated series will have an error correction representation.

Failure to include cointegrating relations implies model misspeciÞcation. In the context here, the

6Even the semi-monthly Lundberg Survey data overstates the true frequency of the data as the

surveys are based on a rotating set of cities in which the same set of cities only appear monthly.

The frequency of the data has been a serious impediment to researchers trying to identify complex

lagged price responses using weekly, semi-monthly, or monthly data.
7The results presented here are based on the Houston, Texas regional bulk price reported by

Platt�s.
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idea is that gasoline prices and crude oil prices may be cointegrated even though both series may

be non-stationary.8 If the price series in (1) are cointegrated, and there is no time trend in PG, the

familiar error correction model then follows:

Basic Error Correction Model:

∆PGt =
kP
i=0
βci∆PCt−i +

nP
i=1
βgi∆PGt−i + θ (zt−1) + εt (2)

The βci coefficients measure the short run impact of crude prices while the βgi coefficients measure

the short run impact of lagged gasoline prices. θ is the long-run equilibrium adjustment parameter

while the term in parenthesis (zt−1 = PGt−1 − γ0 − γ1PCt−1) represents the long run equilibrium
relationship between gasoline and crude oil prices. The parameters, γ0 and γ1, can be estimated

superconsistently by a previous OLS regression of gasoline prices on crude oil prices. Thus zt−1

measures the long run disequilibrium between crude and gasoline prices, which follows a stationary

process because the two series are cointegrated. Because the OLS estimates of γ0 and γ1 are

superconsistent, inference on the parameters of equation (2) can proceed as though γ0 and γ1 are

known with certainty. Additionally, because all of the regressors in (2) are stationary, inference on

functions of the parameters (including impulse responses) is standard.9

The appeal of the error correction model is that it postulates a type of underlying equilibrium

in which if there is no change in crude oil prices and if gasoline and crude prices are in long run

equilibrium, gasoline prices will be unchanged. Implicit in the error correction model is a type

of equilibrium condition in which the long run impact of a permanent change in crude oil prices

is given by γ1. This equilibrium relationship is extremely important for economic theory reasons.

Even though asymmetric adjustment responses are plausible, the long run cointegrating relationship

between gasoline and crude prices must be identical for price increases or decreases.

Generalization of the basic error correction model to account for asymmetric short run price

responses is simple.

8Augmented Dickey-Fuller (Said and Dickey (1984)) test results were sensitive to the choice of

lag length and deterministics, as is common in the applied literature. p-values were between 12%

and 2%. AR(1) estimates indicate both series had coefficients of autocorrelation in excess of 0.99

for the period 1985-1998.
9See, for instance, Hamilton (1994).
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Asymmetric Error Correction Model:

∆PGt =
kP
i=0
β+ci∆PCt−i +

nP
i=1
β+gi∆PGt−i + θ

+ (PGt−1 − γ0 − γ1PCt−1)

+
kP
i=0
β−ci∆PCt−i +

nP
i=1
β−gi∆PGt−i + θ

− (PGt−1 − γ0 − γ1PCt−1) + εt (3)

Here the β+ci apply when ∆PCt−i > 0, while the β
+
gi apply when ∆PGt−i > 0, and similarly for β

−
ci

and β−gi. θ+ corresponds to situations where ∆PCt > 0, while θ− corresponds to situations where

∆PCt ≤ 0. Equation (3) retains the basic spirit of the error correction model but allows greater
ßexibility of the response of gasoline prices to crude oil prices.

Table 1 reports the results of estimating (2) and (3) by OLS on daily data from February 1985 to

November 1998. Lag lengths, k and n, were chosen to be one using the Schwarz (1978) information

criterion, which is a consistent lag selection criterion (Lutkepohl (1991)).10 The reported standard

errors are Newey and West (1987) HAC consistent standard errors, computed using lag truncation

equal to 4 (T/100)2/9 . The cointegrating vector parameters γ0 and γ1 were estimated by OLS as in

Engle and Granger (1987). Similar results were obtained when using the full information maximum

likelihood procedure of Johansen (1988, 1991). The data are daily observations from February 1985

to November 1998.

The parameter estimates in Table 1 for the symmetric and asymmetric ECMs suggest a large in-

stantaneous response from a crude price shock and minor differences in the asymmetry parameters.

Indeed, a Wald test reveals that the symmetric speciÞcation cannot be rejected.11 The estimated

impulse response functions for spot gasoline price following positive and negative one dollar changes

in the price of crude oil revealed differences of less than 5 cents per gallon. Furthermore, both con-

Þdence intervals overlap both point estimates of the responses at each lag period,12 leading us to

ask why our results differed so dramatically with BCG. To what degree are the results due to our

longer sample period, a standard ECM speciÞcation, or the use of daily instead of weekly data?

10The constant term was not signiÞcant at the Þve percent level in either equation, and so was

omitted.
11χ2 = 2.462 < χ2(4) = 9.49, p-value=0.65.
12The results showing the impulse response functions and the 95% conÞdence intervals are avail-

able upon request.
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3.2 SpeciÞcation Differences

In contrast to the method outlined above, BCG estimated the parameters of the error correction

model, including γ0 and γ1, in one step. They estimated the following equation by 2SLS, including

time Þxed effects as well:

∆PGt = −θ1φ0 +Pn
i=0

³
β+i ∆PC

+
t−i + β

−
i ∆PC

−
t−i
´
+
Pn
i=1

³
γ+i ∆PG

+
t−i + γ

−
i ∆PG

−
t−i
´

+ θ1PGt−1 − θ1φ1PCt−1 + θ1ϕ2TIMEt + εt. (4)

Using the parameters of this equation, it is possible to infer the parameters of the cointegration

vector and thus impulse responses for PG following positive and negative changes in PC.

There are two reasons we might prefer the impulse responses which are derived from the two-step

procedure of Engle and Granger (1987). First, little is known about the Þnite sample properties

of cointegration vectors estimated by BCG�s non-standard method, especially given that 2SLS was

used to estimate equation (4) .13 Given that BCG found an implied estimate of γ1 of less than 0.8,

which is highly implausible, there are grounds to be suspicious of the estimation procedure. Using

either OLS or the full information maximum likelihood approach of Johansen (1988, 1991), we Þnd

an estimated coefficient on PCt−1 which is slightly greater than one, implying dollar per dollar pass

throughs in crude oil costs. Second, equation (4) involves the regression of a stationary variable on

a nonstationary variable, and the coefficients will have a nonstandard limiting distribution (see e.g.

Watson (1994)).14 In view of these concerns, it is important to determine the extent to which BCG�s

results rest on their non-standard estimation approach or their use of weekly data. Henceforth, we

limit the sample period to that of BCG (March 1986 to November 1992).

Figure 1 shows the point estimates of impulse responses estimated using OLS with BCG�s spec-

iÞcation and compares them to the standard ECM speciÞcation described in equation (3).15 The

corresponding parameter estimates are reported in Table I under the headings �BCG Model/Data�

13The rate of convergence for γ1 using BCG�s procedure will be
√
T rather than T, because γ1 is

calculated as the ratio of two variables with a
√
T rate of convergence. More importantly, the Þnite

sample performance of BCG�s method has not been studied extensively in the literature, and it

may potentially be badly biased, which is not uncommon among other estimators that have been

proposed (see Banerjee, et al (1993)).
14See Mankiw and Shapiro (1985) for evidence that the incorrect assumption of asymptotic

normality can have very signiÞcant effects on hypothesis tests.
15The impulse response function conÞdence intervals are available upon request.
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and �ECM Model/BCG Data�. OLS estimation using BCG�s non-standard estimation approach

and their weekly data show a typical rockets and feathers response to crude oil price shocks, similar

to their 2SLS results. Asymmetry is reßected as in BCG. But when using the standard two-step

estimation procedure, we cannot reject symmetry. While there is still a difference in the point es-

timates of the impulse responses through week 2, the difference is only 30 cents, as opposed to the

approximately 75 cents found by BCG. Furthermore, the point estimates are well within the 95%

conÞdence interval, meaning that their Þnding of asymmetry may be accounted for by sampling

variation. After week 2, the impulse responses are almost exactly the same. Finally, it is interesting

to note that the shape of the impulse responses for the ECM in Figure 1 is more in line with what

should be expected. BCG found a pronounced �overshooting� of gasoline prices following a crude

price increase � gasoline prices increased $1.50 in the Þrst two weeks, then proceeded to decline

about 75 cents over the next eight weeks. Clearly, their evidence for asymmetry rests on their

non-standard estimation approach, which has dubious properties.

3.3 Effects of Weekly vs. Daily Data

Now we turn to the issue of daily versus weekly data, adopting for purposes of comparison the

BCG speciÞcation. Figure 2 presents impulse response functions using BCG�s method estimated

for both their weekly data and daily data which cover the same time span. The dotted and dashed

lines in Figure 2 show point estimates of the impulse response functions obtained from using BCG�s

estimation procedure using ten lags of daily data.16 The point estimates of the impulse responses

are never more than 36 cents apart, which is substantially less than the 75 cent difference in

point estimates found using weekly data. The differences in impulse response functions are never

statistically signiÞcant.17 The daily data fail to show the pronounced overshooting of gasoline price

increases that is present in the weekly data. This is particularly striking since we are adopting the

BCG speciÞcation so that the only difference is the use of daily rather than weekly data. It is,

however, exactly what Geweke (1978) predicted could happen if one week is not a sufficiently small

16The estimated coefficients and standard errors, as well as the conÞdence intervals for the impulse

response functions, are available upon request.
17On day 6, the day with the largest estimated difference, the conÞdence bands for the impulse

response function following a positive crude price shock are approximately ±30 cents, while the
conÞdence bands for a negative crude price shock are approximately ±50 cents.
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interval.

3.4 Prediction Tests Using Out-of-Sample Forecasts

Yet an additional method for selecting among the symmetric and asymmetric models presented

above is to ask which of them produces the best out-of-sample forecasts. If gasoline prices really

do respond asymmetrically, and the asymmetry is as pronounced as that found by BCG, the

asymmetric speciÞcation should produce much better forecasts. We Þrst estimated symmetric

and asymmetric versions of BCG�s speciÞcation using BCG�s weekly dataset. Then using those

parameters and the observed time series for crude prices from 1992 to 1998, we computed forecasts

of the change in gasoline price for the period November 1992 through November 1998, which is

the six year period following the end of BCG�s dataset. Surprisingly, the symmetric variant of the

BCG model forecasts better for this time period, producing an MSE of $1.31 compared to an MSE

of $1.45 for the asymmetric model. When using a standard ECM speciÞcation, we Þnd the same

result � a symmetric model forecasts better than an asymmetric model. Further, the standard ECM

speciÞcation forecasts better than BCG�s speciÞcation whether or not we allow for asymmetry. The

MSE for a standard ECM speciÞcation was $1.29 for equation (3) assuming asymmetry, and $1.24

for equation (2) assuming symmetry.

4 Summary and Conclusions

We estimate a standard error correction model using daily data over a longer period (February

1985 to November 1998) and Þnd no evidence of asymmetry in the response of regional wholesale

gasoline prices to crude oil price shocks. Daily regional gasoline prices adjust almost instantaneously

and symmetrically to crude oil price changes. This implies a very efficient market with few rigidities.

As we demonstrate, the BCG results turn out to be rather fragile. Either adoption of the

standard estimation approach for error correction models or the use of daily instead of weekly data

was sufficient to eliminate most of the evidence of asymmetry. While rigidities at the wholesale

level appear minimal, their conclusions about rigidities at the retail gasoline price level may well

turn out to be correct. We would urge caution, however, until daily data are available.

8



References

[1] Adams, F. Gerard, and James M. Griffin, �An Economic-Linear Programming Model of the

U.S. Petroleum ReÞning Industry,� Journal of the American Statistical Association 67 (Sep-

tember 1972), 542-551.

[2] Bacon, Robert W., �Rockets and Feathers: The Asymmetric Speed of Adjustment of U.K.

Retail Gasoline Prices to Cost Changes,� Energy Economics 13 (July 1991), 211-218.

[3] Balke, Nathan S., Stephan P.A. Brown, andMine K. Yucel, �Crude Oil and Gasoline Prices: An

Asymmetric Relationship?,� Economic Review, Federal Reserve Bank of Dallas (Þrst quarter

1998), 1-11.

[4] Banerjee, Anindya, Juan J. Dolado, John W. Galbraith, and David F. Hendry, Co-Integration,

Error-Correction, and the Econometric Analysis of Non-Stationary Data (Oxford: Oxford

University Press, 1993).

[5] Blanchard, Olivier J., and Lawerence H. Summers, �Hysteresis Unemployment,� European

Economic Review 31 (February/March 1987), 288-295.

[6] Borenstein, Severin, �Selling Costs and Switching Costs: Explaining Retail Gasoline Margins,�

Rand Journal of Economics 22 (Autumn 1991), 354-369.

[7] Borenstein, Severin, Colin A. Cameron, and Richard Gilbert, �Do Gasoline Prices Respond

Asymmetrically to Crude Oil Price Changes?,� Quarterly Journal of Economics 112 (February

1997), 305-339.

[8] Borenstein, Severin, and Andrea Shepherd, �Dynamic Pricing in Retail Gasoline Markets,�

Rand Journal of Economics 27 (Autumn 1996), 429-451.

[9] Engle, Robert F., and Clive W.J. Granger, �Co-Integration and Error Correction: Represen-

tation, Estimation, and Testing,� Econometrica 55 (March 1987), 251-276.

[10] Geweke, John, �Temporal Aggregation in the Multiple Regression Model,� Econometrica 46

(May 1978), 643-661.

9



[11] Granger, C.W.J., and T.H. Lee, �Investigation of Production, Sales and Inventory Relation-

ships Using Multicointegration and Non-Symmetric Error Correction Models,� Journal of Ap-

plied Econometrics 4 (December 1989), 145-159.

[12] Hamilton, James D., Time Series Analysis (Princeton, NJ: Princeton University Press, 1994).

[13] Johansen, Soren, �Statistical Analysis of Cointegrating Vectors,� Journal of Economic Dy-

namics and Control 12 (June/September 1988), 231-254.

[14] Johansen, Soren, �Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian

Vector Autoregressive Models,� Econometrica 59 (November 1991), 1551-1580.

[15] Lutkepohl, Helmut, Introduction to Multiple Time Series Analysis, second edition, (New York,

NY: Springer-Verlag, 1991).

[16] Mankiw, N. Gregory and Matthew D. Shapiro, �Trends, Random Walks and the Permanent

Income Hypothesis�, Journal of Monetary Economics 16 (September 1985), 165-174.

[17] Newey, Whitney K., and Kenneth D. West, �A Simple Positive Semi-DeÞnite, Heteroskedastic-

ity and Autocorrelation Consistent Covariance Matrix,� Econometrica 55 (May 1987), 703-708.

[18] Norman, Donald A., and David Shin, �Price Adjustment in Gasoline and Heating Oil Markets,�

American Petroleum Institute Study No. 60 (August 1991).

[19] Peltzman, Sam, �Prices Rise Faster Than They Fall,� Journal of Political Economy 108 (June

2000), 466-502.

[20] Reagan, Patricia B., and Martin L. Weitzman, �Asymmetries in Price and Quantity Adjust-

ments by the Competitive Firm,� Journal of Economic Theory 27 (August 1982), 410-420.

[21] Said, Said E., and David A. Dickey, �Testing for Unit Roots in Autoregressive-Moving Average

Models of Unknown Order,� Biometrika 71 (December 1984), 599-607.

[22] Schwarz, Gideon, �Estimating the Dimension of a Model,� The Annals of Statistics 6 (March

1978), 461-464.

10



[23] Watson, Mark W., �Vector Autoregressions and Cointegration� (pp. 2843-2915), in Robert

F. Engle and Daniel L. McFadden (Eds.), Handbook of Econometrics, Volume IV (New York:

North-Holland, 1994).

[24] Wolfram, Rudolf, �Positivistic Measure of Aggregate Supply Elasticities: Some New Ap-

proaches � Some Critical Notes,� American Journal of Agricultural Economics (1971), 356-359.

11



T
ab
le
1

S
y
m
m
et
ri
c
E
C
M
/

A
sy
m
m
et
ri
c
E
C
M
/

B
C
G
M
o
d
el
/

E
C
M
M
o
d
el
/

D
a
il
y
D
a
ta

D
ai
ly
D
a
ta

B
C
G
W
ee
k
ly
D
at
a

B
C
G
W
ee
k
ly
D
at
a

R
eg
re
ss
or

C
o
effi
ci
en
t
S
td
E
rr
or

C
o
effi
ci
en
t
S
td
E
rr
or

C
o
effi
ci
en
t
S
td
E
rr
or

C
o
effi
ci
en
t
S
td
E
rr
or

co
n
st
a
n
t

3.
32
4

0.
89
7

∆
P
C
t

0.
77
5

0.
03
8

∆
P
C
+ t

0
.7
48

0.
04
9

0
.8
56

0.
10
0

0.
8
03

0
.1
64

∆
P
C
− t

0
.7
99

0.
05
5

0
.8
83

0.
09
2

0.
9
84

0
.1
36

∆
P
C
t−
1

-0
.0
56

0.
02
6

∆
P
C
+ t−
1

0
.0
02

0.
04
8

0
.6
04

0.
12
4

0.
5
05

0
.1
53

∆
P
C
− t−
1

-0
.1
01

0.
04
2

-0
.1
47

0.
11
2

-0
.1
02

0
.1
91

∆
P
C
+ t−
2

-0
.0
80

0
.1
2
6

-0
.1
85

0
.1
71

∆
P
C
− t−
2

-0
.2
73

0
.1
0
5

-0
.2
02

0
.1
34

∆
P
G
t−
1

0.
14
5

0.
02
6

∆
P
G
+ t−
1

0.
13
9

0.
04
6

-0
.1
30

0.
08
9

-0
.1
40

0
.1
30

∆
P
G
− t−
1

0.
15
4

0.
03
6

-0
.0
03

0.
08
6

-0
.0
11

0
.1
42

∆
P
G
+ t−
2

0.
05
9

0.
09
1

0.
0
50

0
.0
87

∆
P
G
− t−
2

0.
23
7

0.
08
3

0.
2
24

0
.0
88

P
G
t−
1

-0
.1
56

0.
03
0

P
C
t−
1

0.
08
6

0.
03
2

T
im
e

0.
00
7

0.
00
2

z t
−1

-0
.0
21

0.
00
4

-0
.1
14

0
.0
30

z
+ t−
1

-0
.0
17

0.
00
7

z
− t−
1

-0
.0
25

0.
00
8

C
oi
n
te
gr
a
ti
n
g
R
el
at
io
n
sh
ip

co
n
st
a
n
t

2.
97
0

0.
17
7

2.
97
0

0.
17
7

3.
87
7

0.
26
5

P
C
t−
1

1.
06
3

0.
00
9

1.
06
3

0.
00
9

1.
02
8

0.
01
3



Figure 2
BCG Specification With Weekly vs. Daily Data
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BCG Specification vs. Standard ECM Specification
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